Serveur d'exploration sur le Covid à Stanford

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Near-Silent and Distortion-Free Diffusion MRI in Pediatric Musculoskeletal Disorders: Comparison With Echo Planar Imaging Diffusion.

Identifieur interne : 000055 ( Main/Exploration ); précédent : 000054; suivant : 000056

Near-Silent and Distortion-Free Diffusion MRI in Pediatric Musculoskeletal Disorders: Comparison With Echo Planar Imaging Diffusion.

Auteurs : Jesse K. Sandberg [États-Unis] ; Victoria A. Young [États-Unis] ; Ali B. Syed [États-Unis] ; Jianmin Yuan [États-Unis] ; Yuxin Hu [États-Unis] ; Christopher Sandino [États-Unis] ; Anne Menini [États-Unis] ; Brian Hargreaves [États-Unis] ; Shreyas Vasanawala [États-Unis]

Source :

RBID : pubmed:32815203

Descripteurs français

English descriptors

Abstract

BACKGROUND

Diffusion-weighted imaging (DWI) is common for evaluating pediatric musculoskeletal lesions, but suffers from geometric distortion and intense acoustic noise.

PURPOSE

To investigate the performance of a near-silent and distortion-free DWI sequence (DW-SD) relative to standard echo-planar DWI (DW-EPI) in pediatric extremity MRI.

STUDY TYPE

Prospective validation study.

SUBJECTS

Thirty-nine children referred for extremity MRI.

FIELD STRENGTH/SEQUENCE

DW-EPI and DW-SD, based on a rotating ultrafast sequence modified with sinusoidal diffusion preparation gradients, at 3T.

ASSESSMENT

DW-SD image quality (S

STATISTICAL TESTS

Wilcoxon rank-sum test and confidence interval of proportions (CIOP) were calculated for S

RESULTS

DW-SD and DW-EPI ADC values for bone marrow, muscle, and lesions were not significantly different (P = 0.3, P = 0.2, and P = 0.27, respectively) and had an overall ADC COV of 14.8% (95% confidence interval: 12.3%, 16.9%) and no significant proportional bias on Bland-Altman analysis. S

DATA CONCLUSION

DW-SD of the extremities provided similar ADC values and improved image quality compared with conventional DW-EPI. Level of Evidence 2 Technical Efficacy Stage 2 J. MAGN. RESON. IMAGING 2021;53:504-513.


DOI: 10.1002/jmri.27330
PubMed: 32815203


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Near-Silent and Distortion-Free Diffusion MRI in Pediatric Musculoskeletal Disorders: Comparison With Echo Planar Imaging Diffusion.</title>
<author>
<name sortKey="Sandberg, Jesse K" sort="Sandberg, Jesse K" uniqKey="Sandberg J" first="Jesse K" last="Sandberg">Jesse K. Sandberg</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Radiology, Stanford University, Stanford, California, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Radiology, Stanford University, Stanford, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Stanford (Californie)</settlement>
</placeName>
<orgName type="university">Université Stanford</orgName>
</affiliation>
</author>
<author>
<name sortKey="Young, Victoria A" sort="Young, Victoria A" uniqKey="Young V" first="Victoria A" last="Young">Victoria A. Young</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Radiology, Stanford University, Stanford, California, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Radiology, Stanford University, Stanford, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Stanford (Californie)</settlement>
</placeName>
<orgName type="university">Université Stanford</orgName>
</affiliation>
</author>
<author>
<name sortKey="Syed, Ali B" sort="Syed, Ali B" uniqKey="Syed A" first="Ali B" last="Syed">Ali B. Syed</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Radiology, Stanford University, Stanford, California, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Radiology, Stanford University, Stanford, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Stanford (Californie)</settlement>
</placeName>
<orgName type="university">Université Stanford</orgName>
</affiliation>
</author>
<author>
<name sortKey="Yuan, Jianmin" sort="Yuan, Jianmin" uniqKey="Yuan J" first="Jianmin" last="Yuan">Jianmin Yuan</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Radiology, Stanford University, Stanford, California, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Radiology, Stanford University, Stanford, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Stanford (Californie)</settlement>
</placeName>
<orgName type="university">Université Stanford</orgName>
</affiliation>
</author>
<author>
<name sortKey="Hu, Yuxin" sort="Hu, Yuxin" uniqKey="Hu Y" first="Yuxin" last="Hu">Yuxin Hu</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Radiology, Stanford University, Stanford, California, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Radiology, Stanford University, Stanford, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Stanford (Californie)</settlement>
</placeName>
<orgName type="university">Université Stanford</orgName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Electrical Engineering, Stanford University, Stanford, California, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Electrical Engineering, Stanford University, Stanford, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Stanford (Californie)</settlement>
</placeName>
<orgName type="university">Université Stanford</orgName>
</affiliation>
</author>
<author>
<name sortKey="Sandino, Christopher" sort="Sandino, Christopher" uniqKey="Sandino C" first="Christopher" last="Sandino">Christopher Sandino</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Electrical Engineering, Stanford University, Stanford, California, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Electrical Engineering, Stanford University, Stanford, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Stanford (Californie)</settlement>
</placeName>
<orgName type="university">Université Stanford</orgName>
</affiliation>
</author>
<author>
<name sortKey="Menini, Anne" sort="Menini, Anne" uniqKey="Menini A" first="Anne" last="Menini">Anne Menini</name>
<affiliation wicri:level="2">
<nlm:affiliation>Application Science Lab, GE Healthcare, Menlo Park, California, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Application Science Lab, GE Healthcare, Menlo Park, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hargreaves, Brian" sort="Hargreaves, Brian" uniqKey="Hargreaves B" first="Brian" last="Hargreaves">Brian Hargreaves</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Radiology, Stanford University, Stanford, California, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Radiology, Stanford University, Stanford, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Stanford (Californie)</settlement>
</placeName>
<orgName type="university">Université Stanford</orgName>
</affiliation>
</author>
<author>
<name sortKey="Vasanawala, Shreyas" sort="Vasanawala, Shreyas" uniqKey="Vasanawala S" first="Shreyas" last="Vasanawala">Shreyas Vasanawala</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Radiology, Stanford University, Stanford, California, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Radiology, Stanford University, Stanford, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Stanford (Californie)</settlement>
</placeName>
<orgName type="university">Université Stanford</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2021">2021</date>
<idno type="RBID">pubmed:32815203</idno>
<idno type="pmid">32815203</idno>
<idno type="doi">10.1002/jmri.27330</idno>
<idno type="wicri:Area/Main/Corpus">000417</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000417</idno>
<idno type="wicri:Area/Main/Curation">000417</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000417</idno>
<idno type="wicri:Area/Main/Exploration">000417</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Near-Silent and Distortion-Free Diffusion MRI in Pediatric Musculoskeletal Disorders: Comparison With Echo Planar Imaging Diffusion.</title>
<author>
<name sortKey="Sandberg, Jesse K" sort="Sandberg, Jesse K" uniqKey="Sandberg J" first="Jesse K" last="Sandberg">Jesse K. Sandberg</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Radiology, Stanford University, Stanford, California, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Radiology, Stanford University, Stanford, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Stanford (Californie)</settlement>
</placeName>
<orgName type="university">Université Stanford</orgName>
</affiliation>
</author>
<author>
<name sortKey="Young, Victoria A" sort="Young, Victoria A" uniqKey="Young V" first="Victoria A" last="Young">Victoria A. Young</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Radiology, Stanford University, Stanford, California, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Radiology, Stanford University, Stanford, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Stanford (Californie)</settlement>
</placeName>
<orgName type="university">Université Stanford</orgName>
</affiliation>
</author>
<author>
<name sortKey="Syed, Ali B" sort="Syed, Ali B" uniqKey="Syed A" first="Ali B" last="Syed">Ali B. Syed</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Radiology, Stanford University, Stanford, California, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Radiology, Stanford University, Stanford, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Stanford (Californie)</settlement>
</placeName>
<orgName type="university">Université Stanford</orgName>
</affiliation>
</author>
<author>
<name sortKey="Yuan, Jianmin" sort="Yuan, Jianmin" uniqKey="Yuan J" first="Jianmin" last="Yuan">Jianmin Yuan</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Radiology, Stanford University, Stanford, California, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Radiology, Stanford University, Stanford, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Stanford (Californie)</settlement>
</placeName>
<orgName type="university">Université Stanford</orgName>
</affiliation>
</author>
<author>
<name sortKey="Hu, Yuxin" sort="Hu, Yuxin" uniqKey="Hu Y" first="Yuxin" last="Hu">Yuxin Hu</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Radiology, Stanford University, Stanford, California, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Radiology, Stanford University, Stanford, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Stanford (Californie)</settlement>
</placeName>
<orgName type="university">Université Stanford</orgName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Electrical Engineering, Stanford University, Stanford, California, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Electrical Engineering, Stanford University, Stanford, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Stanford (Californie)</settlement>
</placeName>
<orgName type="university">Université Stanford</orgName>
</affiliation>
</author>
<author>
<name sortKey="Sandino, Christopher" sort="Sandino, Christopher" uniqKey="Sandino C" first="Christopher" last="Sandino">Christopher Sandino</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Electrical Engineering, Stanford University, Stanford, California, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Electrical Engineering, Stanford University, Stanford, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Stanford (Californie)</settlement>
</placeName>
<orgName type="university">Université Stanford</orgName>
</affiliation>
</author>
<author>
<name sortKey="Menini, Anne" sort="Menini, Anne" uniqKey="Menini A" first="Anne" last="Menini">Anne Menini</name>
<affiliation wicri:level="2">
<nlm:affiliation>Application Science Lab, GE Healthcare, Menlo Park, California, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Application Science Lab, GE Healthcare, Menlo Park, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hargreaves, Brian" sort="Hargreaves, Brian" uniqKey="Hargreaves B" first="Brian" last="Hargreaves">Brian Hargreaves</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Radiology, Stanford University, Stanford, California, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Radiology, Stanford University, Stanford, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Stanford (Californie)</settlement>
</placeName>
<orgName type="university">Université Stanford</orgName>
</affiliation>
</author>
<author>
<name sortKey="Vasanawala, Shreyas" sort="Vasanawala, Shreyas" uniqKey="Vasanawala S" first="Shreyas" last="Vasanawala">Shreyas Vasanawala</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Radiology, Stanford University, Stanford, California, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Radiology, Stanford University, Stanford, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Stanford (Californie)</settlement>
</placeName>
<orgName type="university">Université Stanford</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of magnetic resonance imaging : JMRI</title>
<idno type="eISSN">1522-2586</idno>
<imprint>
<date when="2021" type="published">2021</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adolescent (MeSH)</term>
<term>Adult (MeSH)</term>
<term>Child (MeSH)</term>
<term>Child, Preschool (MeSH)</term>
<term>Diffusion Magnetic Resonance Imaging (methods)</term>
<term>Echo-Planar Imaging (methods)</term>
<term>Female (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Image Interpretation, Computer-Assisted (methods)</term>
<term>Infant (MeSH)</term>
<term>Male (MeSH)</term>
<term>Musculoskeletal Diseases (diagnostic imaging)</term>
<term>Prospective Studies (MeSH)</term>
<term>Reproducibility of Results (MeSH)</term>
<term>Young Adult (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adolescent (MeSH)</term>
<term>Adulte (MeSH)</term>
<term>Enfant (MeSH)</term>
<term>Enfant d'âge préscolaire (MeSH)</term>
<term>Femelle (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Imagerie par résonance magnétique de diffusion (méthodes)</term>
<term>Imagerie échoplanaire (méthodes)</term>
<term>Interprétation d'images assistée par ordinateur (méthodes)</term>
<term>Jeune adulte (MeSH)</term>
<term>Maladies ostéomusculaires (imagerie diagnostique)</term>
<term>Mâle (MeSH)</term>
<term>Nourrisson (MeSH)</term>
<term>Reproductibilité des résultats (MeSH)</term>
<term>Études prospectives (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="diagnostic imaging" xml:lang="en">
<term>Musculoskeletal Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="imagerie diagnostique" xml:lang="fr">
<term>Maladies ostéomusculaires</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Diffusion Magnetic Resonance Imaging</term>
<term>Echo-Planar Imaging</term>
<term>Image Interpretation, Computer-Assisted</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Imagerie par résonance magnétique de diffusion</term>
<term>Imagerie échoplanaire</term>
<term>Interprétation d'images assistée par ordinateur</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adolescent</term>
<term>Adult</term>
<term>Child</term>
<term>Child, Preschool</term>
<term>Female</term>
<term>Humans</term>
<term>Infant</term>
<term>Male</term>
<term>Prospective Studies</term>
<term>Reproducibility of Results</term>
<term>Young Adult</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Adolescent</term>
<term>Adulte</term>
<term>Enfant</term>
<term>Enfant d'âge préscolaire</term>
<term>Femelle</term>
<term>Humains</term>
<term>Jeune adulte</term>
<term>Mâle</term>
<term>Nourrisson</term>
<term>Reproductibilité des résultats</term>
<term>Études prospectives</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Diffusion-weighted imaging (DWI) is common for evaluating pediatric musculoskeletal lesions, but suffers from geometric distortion and intense acoustic noise.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>PURPOSE</b>
</p>
<p>To investigate the performance of a near-silent and distortion-free DWI sequence (DW-SD) relative to standard echo-planar DWI (DW-EPI) in pediatric extremity MRI.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>STUDY TYPE</b>
</p>
<p>Prospective validation study.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>SUBJECTS</b>
</p>
<p>Thirty-nine children referred for extremity MRI.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>FIELD STRENGTH/SEQUENCE</b>
</p>
<p>DW-EPI and DW-SD, based on a rotating ultrafast sequence modified with sinusoidal diffusion preparation gradients, at 3T.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>ASSESSMENT</b>
</p>
<p>DW-SD image quality (S</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>STATISTICAL TESTS</b>
</p>
<p>Wilcoxon rank-sum test and confidence interval of proportions (CIOP) were calculated for S</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>DW-SD and DW-EPI ADC values for bone marrow, muscle, and lesions were not significantly different (P = 0.3, P = 0.2, and P = 0.27, respectively) and had an overall ADC COV of 14.8% (95% confidence interval: 12.3%, 16.9%) and no significant proportional bias on Bland-Altman analysis. S</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>DATA CONCLUSION</b>
</p>
<p>DW-SD of the extremities provided similar ADC values and improved image quality compared with conventional DW-EPI. Level of Evidence 2 Technical Efficacy Stage 2 J. MAGN. RESON. IMAGING 2021;53:504-513.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32815203</PMID>
<DateCompleted>
<Year>2021</Year>
<Month>01</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2021</Year>
<Month>01</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1522-2586</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>53</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2021</Year>
<Month>02</Month>
</PubDate>
</JournalIssue>
<Title>Journal of magnetic resonance imaging : JMRI</Title>
<ISOAbbreviation>J Magn Reson Imaging</ISOAbbreviation>
</Journal>
<ArticleTitle>Near-Silent and Distortion-Free Diffusion MRI in Pediatric Musculoskeletal Disorders: Comparison With Echo Planar Imaging Diffusion.</ArticleTitle>
<Pagination>
<MedlinePgn>504-513</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/jmri.27330</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND">Diffusion-weighted imaging (DWI) is common for evaluating pediatric musculoskeletal lesions, but suffers from geometric distortion and intense acoustic noise.</AbstractText>
<AbstractText Label="PURPOSE">To investigate the performance of a near-silent and distortion-free DWI sequence (DW-SD) relative to standard echo-planar DWI (DW-EPI) in pediatric extremity MRI.</AbstractText>
<AbstractText Label="STUDY TYPE">Prospective validation study.</AbstractText>
<AbstractText Label="SUBJECTS">Thirty-nine children referred for extremity MRI.</AbstractText>
<AbstractText Label="FIELD STRENGTH/SEQUENCE">DW-EPI and DW-SD, based on a rotating ultrafast sequence modified with sinusoidal diffusion preparation gradients, at 3T.</AbstractText>
<AbstractText Label="ASSESSMENT">DW-SD image quality (S
<sub>anat</sub>
) was assessed from 0 (nondiagnostic) to 5 (outstanding) and comparative image quality (S
<sub>comp</sub>
) (from -2 = DW-EPI more delineated to +2 = DW-SD more delineated, 0 = same). ADC measured by DW-SD and DW-EPI were compared in bone marrow, muscle, and lesions.</AbstractText>
<AbstractText Label="STATISTICAL TESTS">Wilcoxon rank-sum test and confidence interval of proportions (CIOP) were calculated for S
<sub>comp</sub>
, Student's t-test, coefficient of variation (COV), and Bland-Altman analysis for ADC values, and intraclass correlation coefficient (ICC) for interreader agreement.</AbstractText>
<AbstractText Label="RESULTS">DW-SD and DW-EPI ADC values for bone marrow, muscle, and lesions were not significantly different (P = 0.3, P = 0.2, and P = 0.27, respectively) and had an overall ADC COV of 14.8% (95% confidence interval: 12.3%, 16.9%) and no significant proportional bias on Bland-Altman analysis. S
<sub>anat</sub>
CIOP was rated diagnostic or better (score of 3, 4, or 5) in 72-98% of cases for bone marrow, muscle, and soft tissues. DW-SD was equivalent to or preferred over DW-EPI in muscles and soft tissues, with CIOP 86-93% and 93%, respectively. Lesions were equally visualized on DW-SD and DW-EPI in 40-51%, with DW-SD preferred in 44-56% of cases. DW-SD was rated significantly better than DW-EPI across all comparative variables that included bone marrow, muscle, soft tissue, cartilage, and lesions (P < 0.05). Readers had moderate to near-perfect (ICC range = 0.45-0.85).</AbstractText>
<AbstractText Label="DATA CONCLUSION">DW-SD of the extremities provided similar ADC values and improved image quality compared with conventional DW-EPI. Level of Evidence 2 Technical Efficacy Stage 2 J. MAGN. RESON. IMAGING 2021;53:504-513.</AbstractText>
<CopyrightInformation>© 2020 International Society for Magnetic Resonance in Medicine.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sandberg</LastName>
<ForeName>Jesse K</ForeName>
<Initials>JK</Initials>
<Identifier Source="ORCID">0000-0001-9980-8859</Identifier>
<AffiliationInfo>
<Affiliation>Department of Radiology, Stanford University, Stanford, California, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Young</LastName>
<ForeName>Victoria A</ForeName>
<Initials>VA</Initials>
<AffiliationInfo>
<Affiliation>Department of Radiology, Stanford University, Stanford, California, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Syed</LastName>
<ForeName>Ali B</ForeName>
<Initials>AB</Initials>
<AffiliationInfo>
<Affiliation>Department of Radiology, Stanford University, Stanford, California, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yuan</LastName>
<ForeName>Jianmin</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Radiology, Stanford University, Stanford, California, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hu</LastName>
<ForeName>Yuxin</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Radiology, Stanford University, Stanford, California, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Electrical Engineering, Stanford University, Stanford, California, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sandino</LastName>
<ForeName>Christopher</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Electrical Engineering, Stanford University, Stanford, California, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Menini</LastName>
<ForeName>Anne</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Application Science Lab, GE Healthcare, Menlo Park, California, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hargreaves</LastName>
<ForeName>Brian</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Department of Radiology, Stanford University, Stanford, California, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vasanawala</LastName>
<ForeName>Shreyas</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Radiology, Stanford University, Stanford, California, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 EB009690</GrantID>
<Acronym>EB</Acronym>
<Agency>NIBIB NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 EB026136</GrantID>
<Acronym>EB</Acronym>
<Agency>NIBIB NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL136965</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 EB009690</GrantID>
<Acronym>EB</Acronym>
<Agency>NIBIB NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 EB026136</GrantID>
<Acronym>EB</Acronym>
<Agency>NIBIB NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL136965</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>08</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Magn Reson Imaging</MedlineTA>
<NlmUniqueID>9105850</NlmUniqueID>
<ISSNLinking>1053-1807</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000293" MajorTopicYN="N">Adolescent</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002648" MajorTopicYN="N">Child</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002675" MajorTopicYN="N">Child, Preschool</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038524" MajorTopicYN="N">Diffusion Magnetic Resonance Imaging</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017352" MajorTopicYN="N">Echo-Planar Imaging</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007090" MajorTopicYN="N">Image Interpretation, Computer-Assisted</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007223" MajorTopicYN="N">Infant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009140" MajorTopicYN="N">Musculoskeletal Diseases</DescriptorName>
<QualifierName UI="Q000000981" MajorTopicYN="Y">diagnostic imaging</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011446" MajorTopicYN="N">Prospective Studies</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015203" MajorTopicYN="N">Reproducibility of Results</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055815" MajorTopicYN="N">Young Adult</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">diffusion-weighted imaging</Keyword>
<Keyword MajorTopicYN="Y">distortion-free</Keyword>
<Keyword MajorTopicYN="Y">near-silent MRI</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>05</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>07</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>07</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>8</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2021</Year>
<Month>1</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>8</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32815203</ArticleId>
<ArticleId IdType="doi">10.1002/jmri.27330</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Bhojwani N, Szpakowski P, Partovi S, et al. Diffusion-weighted imaging in musculoskeletal radiology-clinical applications and future directions. Quant Imaging Med Surg 2015;5(5):740-753.</Citation>
</Reference>
<Reference>
<Citation>Subhawong TK, Jacobs MA, Fayad LM. Diffusion-weighted MR imaging for characterizing musculoskeletal lesions. Radiographics 2014;34(5):1163-1177.</Citation>
</Reference>
<Reference>
<Citation>Delin C, Silvera S, Coste J, et al. Reliability and diagnostic accuracy of qualitative evaluation of diffusion-weighted MRI combined with conventional MRI in differentiating between complete and partial anterior cruciate ligament tears. Eur Radiol 2013;23(3):845-854.</Citation>
</Reference>
<Reference>
<Citation>MacKenzie JD, Gonzalez L, Hernandez A, Ruppert K, Jaramillo D. Diffusion-weighted and diffusion tensor imaging for pediatric musculoskeletal disorders. Pediatr Radiol 2007;37(8):781-788.</Citation>
</Reference>
<Reference>
<Citation>Neubauer H, Evangelista L, Hassold N, et al. Diffusion-weighted MRI for detection and differentiation of musculoskeletal tumorous and tumor-like lesions in pediatric patients. World J Pediatr 2012;8(4):342-349.</Citation>
</Reference>
<Reference>
<Citation>Miyati T, Banno T, Fujita H, et al. Acoustic noise analysis in echo planar imaging: Multicenter trial and comparison with other pulse sequences. IEEE Trans Med Imaging 1999;18(8):733-736.</Citation>
</Reference>
<Reference>
<Citation>Le Bihan D, Poupon C, Amadon A, Lethimonnier F. Artifacts and pitfalls in diffusion MRI. J Magn Reson Imaging 2006;24(3):478-488.</Citation>
</Reference>
<Reference>
<Citation>Rösch J, Ott M, Heismann B, et al. Quiet diffusion-weighted head scanning: Initial clinical evaluation in ischemic stroke patients at 1.5T. J Magn Reson Imaging 2016;44(5):1238-1243.</Citation>
</Reference>
<Reference>
<Citation>Hennel F, Girard F, Loenneker T. “Silent” MRI with soft gradient pulses. Magn Reson Med 1999;42(1):6-10.</Citation>
</Reference>
<Reference>
<Citation>Edelstein WA, Hedeen RA, Mallozzi RP, El-Hamamsy SA, Ackermann RA, Havens TJ. Making MRI quieter. Magn Reson Imaging 2002;20(2):155-163.</Citation>
</Reference>
<Reference>
<Citation>Hutter J, Price AN, Cordero-Grande L, et al. Quiet echo planar imaging for functional and diffusion MRI. Magn Reson Med 2018;79(3):1447-1459.</Citation>
</Reference>
<Reference>
<Citation>Porter DA, Heidemann RM. High resolution diffusion-weighted imaging using readout-segmented echo-planar imaging, parallel imaging and a two-dimensional navigator-based reacquisition. Magn Reson Med 2009;62(2):468-475.</Citation>
</Reference>
<Reference>
<Citation>Chen NK, Guidon A, Chang HC, Song AW. A robust multi-shot scan strategy for high-resolution diffusion weighted MRI enabled by multiplexed sensitivity-encoding (MUSE). Neuroimage 2013;72:41-47.</Citation>
</Reference>
<Reference>
<Citation>Dong Z, Wang F, Reese TG, et al. Tilted-CAIPI for highly accelerated distortion-free EPI with point spread function (PSF) encoding. Magn Reson Med 2019;81(1):377-392.</Citation>
</Reference>
<Reference>
<Citation>Butts K, de Crespigny A, Pauly JM, Moseley M. Diffusion-weighted interleaved echo-planar imaging with a pair of orthogonal navigator echoes. Magn Reson Med 1996;35(5):763-770.</Citation>
</Reference>
<Reference>
<Citation>Hu Y, Levine EG, Tian Q, et al. Motion-robust reconstruction of multishot diffusion-weighted images without phase estimation through locally low-rank regularization. Magn Reson Med 2019;81(2):1181-1190.</Citation>
</Reference>
<Reference>
<Citation>Mani M, Jacob M, Kelley D, Magnotta V. Multi-shot sensitivity-encoded diffusion data recovery using structured low-rank matrix completion (MUSSELS). Magn Reson Med 2017;78(2):494-507.</Citation>
</Reference>
<Reference>
<Citation>Zhang Q, Coolen BF, Versluis MJ, Strijkers GJ, Nederveen AJ. Diffusion-prepared stimulated-echo turbo spin echo (DPsti-TSE): An eddy current-insensitive sequence for three-dimensional high-resolution and undistorted diffusion-weighted imaging. NMR Biomed 2017;30(7). doi:10.1002/nbm.3719.</Citation>
</Reference>
<Reference>
<Citation>Xie Y, Yu W, Fan Z, et al. High resolution 3D diffusion cardiovascular magnetic resonance of carotid vessel wall to detect lipid core without contrast media. J Cardiovasc Magn Reson 2014;16(1):67.</Citation>
</Reference>
<Reference>
<Citation>Jeong EK, Kim SE, Parker DL. High-resolution diffusion-weighted 3D MRI, using diffusion-weighted driven-equilibrium (DW-DE) and multishot segmented 3D-SSFP without navigator echoes. Magn Reson Med 2003;50(4):821-829.</Citation>
</Reference>
<Reference>
<Citation>Yamashita K, Yoshiura T, Hiwatashi A, et al. High-resolution three-dimensional diffusion-weighted imaging of middle ear cholesteatoma at 3.0 T MRI: Usefulness of 3D turbo field-echo with diffusion-sensitized driven-equilibrium preparation (TFE-DSDE) compared to single-shot echo-planar imaging. Eur J Radiol 2013;82(9):e471-e475.</Citation>
</Reference>
<Reference>
<Citation>Numano T, Homma K, Hirose T. Diffusion-weighted three-dimensional MP-RAGE MR imaging. Magn Reson Imaging 2005;23(3):463-468.</Citation>
</Reference>
<Reference>
<Citation>Nguyen C, Fan Z, Sharif B, et al. In vivo three-dimensional high resolution cardiac diffusion-weighted MRI: A motion compensated diffusion-prepared balanced steady-state free precession approach. Magn Reson Med 2014;72(5):1257-1267.</Citation>
</Reference>
<Reference>
<Citation>Nguyen C, Sharif-Afshar AR, Fan Z, et al. 3D high-resolution diffusion-weighted MRI at 3T: Preliminary application in prostate cancer patients undergoing active surveillance protocol for low-risk prostate cancer. Magn Reson Med 2016;75(2):616-626.</Citation>
</Reference>
<Reference>
<Citation>Yuan J, Hu Y, Menini A, et al. Near-silent distortionless DWI using magnetization-prepared RUFIS. Magn Reson Med 2020;84(1):170-181.</Citation>
</Reference>
<Reference>
<Citation>Madio DP, Lowe IJ. Ultra-fast imaging using low flip angles and FIDs. Magn Reson Med 1995;34(4):525-529.</Citation>
</Reference>
<Reference>
<Citation>Wu Y, Dai G, Ackerman JL, et al. Water- and fat-suppressed proton projection MRI (WASPI) of rat femur bone. Magn Reson Med 2007;57(3):554-567.</Citation>
</Reference>
<Reference>
<Citation>Knoll F, Bredies K, Pock T, Stollberger R. Second order total generalized variation (TGV) for MRI. Magn Reson Med 2011;65(2):480-491.</Citation>
</Reference>
<Reference>
<Citation>Braithwaite AC, Dale BM, Boll DT, Merkle EM. Short- and midterm reproducibility of apparent diffusion coefficient measurements at 3.0-T diffusion-weighted imaging of the abdomen. Radiology 2009;250(2):459-465.</Citation>
</Reference>
<Reference>
<Citation>Cervantes B, Kirschke JS, Klupp E, et al. Orthogonally combined motion- and diffusion-sensitized driven equilibrium (OC-MDSDE) preparation for vessel signal suppression in 3D turbo spin echo imaging of peripheral nerves in the extremities. Magn Reson Med 2018;79(1):407-415.</Citation>
</Reference>
<Reference>
<Citation>Dietrich O, Biffar A, Reiser MF, Baur-Melnyk A. Diffusion-weighted imaging of bone marrow. Semin Musculoskelet Radiol 2009;13(2):134-144.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
<settlement>
<li>Stanford (Californie)</li>
</settlement>
<orgName>
<li>Université Stanford</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Sandberg, Jesse K" sort="Sandberg, Jesse K" uniqKey="Sandberg J" first="Jesse K" last="Sandberg">Jesse K. Sandberg</name>
</region>
<name sortKey="Hargreaves, Brian" sort="Hargreaves, Brian" uniqKey="Hargreaves B" first="Brian" last="Hargreaves">Brian Hargreaves</name>
<name sortKey="Hu, Yuxin" sort="Hu, Yuxin" uniqKey="Hu Y" first="Yuxin" last="Hu">Yuxin Hu</name>
<name sortKey="Hu, Yuxin" sort="Hu, Yuxin" uniqKey="Hu Y" first="Yuxin" last="Hu">Yuxin Hu</name>
<name sortKey="Menini, Anne" sort="Menini, Anne" uniqKey="Menini A" first="Anne" last="Menini">Anne Menini</name>
<name sortKey="Sandino, Christopher" sort="Sandino, Christopher" uniqKey="Sandino C" first="Christopher" last="Sandino">Christopher Sandino</name>
<name sortKey="Syed, Ali B" sort="Syed, Ali B" uniqKey="Syed A" first="Ali B" last="Syed">Ali B. Syed</name>
<name sortKey="Vasanawala, Shreyas" sort="Vasanawala, Shreyas" uniqKey="Vasanawala S" first="Shreyas" last="Vasanawala">Shreyas Vasanawala</name>
<name sortKey="Young, Victoria A" sort="Young, Victoria A" uniqKey="Young V" first="Victoria A" last="Young">Victoria A. Young</name>
<name sortKey="Yuan, Jianmin" sort="Yuan, Jianmin" uniqKey="Yuan J" first="Jianmin" last="Yuan">Jianmin Yuan</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidStanfordV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000055 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000055 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidStanfordV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32815203
   |texte=   Near-Silent and Distortion-Free Diffusion MRI in Pediatric Musculoskeletal Disorders: Comparison With Echo Planar Imaging Diffusion.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32815203" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidStanfordV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Tue Feb 2 21:24:25 2021. Site generation: Tue Feb 2 21:26:08 2021